Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET
نویسندگان
چکیده
Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency observations of terrestrial ecosystems and is widely used to monitor and model spatiotemporal variability in ecosystem properties and processes that affect terrestrial GPP. We used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and FLUXNET to assess Published by Copernicus Publications on behalf of the European Geosciences Union. 2186 M. Verma et al.: Remote sensing of annual terrestrial gross primary productivity from MODIS how well four metrics derived from remotely sensed vegetation indices (hereafter referred to as proxies) and six remote sensing-based models capture spatial and temporal variations in annual GPP. Specifically, we used the FLUXNET La Thuile data set, which includes several times more sites (144) and site years (422) than previous studies have used. Our results show that remotely sensed proxies and modeled GPP are able to capture significant spatial variation in mean annual GPP in every biome except croplands, but that the percentage of explained variance differed substantially across biomes (10–80 %). The ability of remotely sensed proxies and models to explain interannual variability in GPP was even more limited. Remotely sensed proxies explained 40– 60 % of interannual variance in annual GPP in moisturelimited biomes, including grasslands and shrublands. However, none of the models or remotely sensed proxies explained statistically significant amounts of interannual variation in GPP in croplands, evergreen needleleaf forests, or deciduous broadleaf forests. Robust and repeatable characterization of spatiotemporal variability in carbon budgets is critically important and the carbon cycle science community is increasingly relying on remotely sensing data. Our analyses highlight the power of remote sensing-based models, but also provide bounds on the uncertainties associated with these models. Uncertainty in flux tower GPP, and difference between the footprints of MODIS pixels and flux tower measurements are acknowledged as unresolved challenges.
منابع مشابه
Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set
Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency observations of terrestrial ecosystems and is widely used to monitor and model spatiotemporal variabili...
متن کاملEstimation of Global Vegetation Productivity from Global LAnd Surface Satellite Data
Accurately estimating vegetation productivity is important in research on terrestrial ecosystems, carbon cycles and climate change. Eight-day gross primary production (GPP) and annual net primary production (NPP) are contained in MODerate Resolution Imaging Spectroradiometer (MODIS) products (MOD17), which are considered the first operational datasets for monitoring global vegetation productivi...
متن کاملExploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data
Algorithms that use remotely-sensed vegetation indices to estimate gross primary production (GPP), a key component of the global carbon cycle, have gained a lot of popularity in the past decade. Yet despite the amount of research on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of different vegetation indices ...
متن کاملEvaluating Ecohydrological Impacts of Vegetation Activities on Climatological Perspectives Using MODIS Gross Primary Productivity and Evapotranspiration Products at Korean Regional Flux Network Site
Accurate assessments of spatio-temporal variations in gross primary productivity (GPP), evapotranspiration (ET), and water use efficiency (WUE) play a crucial role in the evaluation of carbon and water balance as well as have considerable effects on climate change. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) products were used to quantify the mean annual GPP and ET at K...
متن کاملMulti-site evaluation of the JULES land surface model using global and local data
This study evaluates the ability of the JULES land surface model (LSM) to simulate photosynthesis using local and global data sets at 12 FLUXNET sites. Model parameters include site-specific (local) values for each flux tower site and the default parameters used in the Hadley Centre Global Environmental Model (HadGEM) climate model. Firstly, gross primary productivity (GPP) estimates from drivi...
متن کامل